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We consider Ising models on a hyperbolic graph which, loosely speaking, is a 
discretization of the hyperbolic plane H 2 in tile same sense as Z a is a discretiza- 
tion of R a. We prove that the models exhibit multiple phase transitions. 
Analogous results for Potts models can be obtained in the same way. 
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1. I N T R O D U C T I O N  

Ising models on the finite-dimensional lattices Z d have been extensively 
studied over the past half  century. It has been proved that phase transitions 
occur provided d~> 2,  t6' lO. t8~ i.e., there exists a critical inverse temperature fl,. 

such that when fl (the inverse temperature)  is above fl,., there is nonunique-  
ness of  the Gibbs states. For  ferromagnetic Ising models with zero external 
field, it is convenient  to focus on the Gibbs states v +, v - ,  and v f obtained 
as the limit of  finite-volume systems { a.,: x ~ A c Z '/} as A ~ Z a with 
respectively plus, minus, and free boundary  condit ions (b.c.). When fl is 
below fl,., the states v + and v -  (which are necessarily extremal) are identi- 
cal and hence the Gibbs state is unique. When fl is above fl,., then v + r v - ;  
if v -r is a mixture of  v + and v - ,  it must  be the symmetric  mixture 
( v + + v - ) / 2 .  This decomposi t ion  of  v / as a mixture of  v + and v -  is 
expected to be-true on Z a at least, it has been proved for d = 2  (refs. 1 
and 13; see also ref. 16) and for d > 2  at all large fl,~91 and at all but coun- 
tably many  fl 's/ '41 In summary,  for Ising models on Z a, a l though it has not  
been completely proved, it is expected that: 
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1 If fl < tic, then the magnetization M = 0 (so v §  v-  and there is 
a unique Gibbs state), and the two-point function (a ,a , ) r -*O as x and 
y separate. 

2. If fl>fl,., then M > O  and vf=(v++v-)/2,  so (a.,.a.,.).r= 
(a,.a.,,)+ >~M2>O for all x and y. 

In this paper, motivated by the works of refs 4 and 17, we consider 
Ising models on a graph G (its definition follows immediately) which is 
roughly isometric to the hyperbolic plane H 2 (see, e.g., ref 5 for the defini- 
tions of rough isometry and H-'), and hence is an e-net of H'-. 14~ In other 
words, G is a discretization of H-" in the same sense as Z a is a discretization 
of R a, Our definition of G given below is straightforward; one does not 
need to know the definition of rough isometry or H'- to understand the 
definition of G. One reason that we state that G is a discretization of H-" 
is that if one wants to study a continuum Ising model on a hyperbolic 
plane, then our model can serve as an approximation of the continuum 
model. Ising models on graphs similar to G were studied by Series and 
Sinai, 119J who constructed uncountably many mutually singular Gibbs 
states which, they believed, are extremal. Other stochastic geometric 
models on manifolds with negative curvatures can be found in ref 15 and 
references therein (the above mentioned H 2 has curvature - 1  ). The graph 
G is defined as follows. Let T~ be a homogeneous tree with degree k (i.e 
each site of T~, has exactly k + 1 neighbors) and let O be the origin of T 2  
Define Tk to be the "forwarding" tree obtained by deleting one of the k + 1 
edges emanating from O Then G is the graph obtained by adding to T k 
edges connecting equal-level sites of Tk (see Fig. 1 ). 

/ \ 

Fig. 1. G is obtained by adding to T 3 horizontal bonds connecting equal-level sites of T s. 
The horizontal bond on the left side of t, as well as the leftmost two "downward" bonds con- 
necting t, to its children are all closed (indicated by dashed bondsl. 
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Independent percolation on G was studied by Benjamini, 141 who 
proved that the model exhibits multiple phase transitions in the sense that 
there exists none, a unique, and infinitely many infinite clusters, respec- 
tively, as the parameter p varies. It is known that there are strong analogies 
between nonuniqueness of infinite clusters in percolation and the 
occurrence of Gibbs states for Ising ferromagnets which are not mixtures 
of v + and v . Thus the results of Benjamini suggest that Ising models on 
G should also exhibit multiple phase transitions. The current paper sub- 
stantiates this suggestion. Define M = - M o  = (tz o )  + to be the magnetiza- 
tion at the origin, where ( . ) ,  denotes expectation with respect to the 
measure v* ( ,  is + or - or f ) .  Note that although M , . = ( a , . ) +  is 
dependent on x because the graph G is not translation invariant, it is easy 
to see by the F K G  inequality that either M.,. is identically equal to zero for 
all x in G, or M,. > 0 for all x in G. Moreover, from the structure of G it 
is not hard to see that M,_/> M o for any x in G. We prove for sufficiently 
large k (k >/8 certainly suffices) that: 

1. For small fl, M = 0 (so v + = v -  and there is a unique Gibbs state). 

2. For  intermediate fl, M > 0  (so v + 4 : v - )  and v f ~ ( v  + + v - ) / 2  (and 
there exists a sequence of pairs of sites {(xi, yi): i=1,2, . . .} with 
[x;-y,I--, oz as i--* ~ such that (a.,,,a.,,i)f~O as i ~  ~ ,  where I x - y [  
denotes the distance between x and y). 

3. For  large fl, M > O  and v-r=(v++v )/2 [and ( axa , . ) . r=  
(a.,.ay)_+ >~M2>0 for any x and y in G].  

We believe that the above results hold for any k >/2, although at pre- 
sent our proof does not work for small k; it requires k to be large enough 
to guarantee that the intermediate region is nonempty. One can improve k 
a little bit at the cost of a messier argument, but we do not see an argu- 
ment which works up to k = 2. In Section 2 we state our results as several 
propositions. The statement is just for Ising models, but our proof applies 
to q-state Potts models with q i> 3 as well, except that it requires larger k 
to guarantee the nonemptiness of the intermediate region. Proof  of the 
propositions is given in Section 3. 

2. P R O P O S I T I O N S  

The ferromagnetic Ising model on the graph G is described by the spin 
random variables {a.,.: x e G}. Each a.,. takes on the values _ 1. The inter- 
action between the spins is described by the Hamiltonian 

/ - /=- �89 o,.o,. (1) 
Ix, yl 



254 Wu 

in which the sum is over nearest neighbor bonds {x, y}, and fl/> 0 is the 
inverse temperature. Let v § (respectively v-  or v s) denote the Gibbs state 
associated with the Hamiltonian H with plus (respectively minus or free) 
b.c. Let ( �9 ) ,  denote the expectation with respect to v*, where �9 = + ,  - ,  
or f. The (infinite-volume) quantities of primary interest to us are the 
magnetization at the origin 

M = - M o  = (Cro) + (2) 

and the two-point function (a, .cr , , ) ,  with * b.c. From (7) below and the 
F K G  inequality it is easy to see that either M,. = (a.,.) + is identically zero 
for all x in G or else M,. > 0 for all x in G, and that M.,./> M for any x in 
G. Our results are stated in the following propositions. 

Proposition 1. I f f l < l n [ ( k + 2 ) / ( k + l ) ] ,  then M = 0  and conse- 
quently the Gibbs state is unique. 

Proposition 2. I f f l > ~ l n [ ( k + l ) / ( k - 1 ) ] ,  then M > 0  and conse- 
quently there are more than one Gibbs state. 

Proposition 3. If fl < (In k)/k, then there exists a sequence of pairs 
of sites { ( x ~ , y i ) : x i e G ,  y i E G ,  and i=1,2, . . .} (with ] x ~ - y ~ l - , c ~  as 
i--, ~ )  such that (a,iCry,)y--, 0 as i--, ~ .  Consequently, if also M > 0 ,  then 

v.r•(v + + v- ) /2  (3) 

Proposition 4. If fl is sufficiently large, then 

( cr.,.try)f> e > 0 (4) 

for any x and y in G, and 

v f =  (v + + v- ) /2  (5) 

The propositions will be proved in the next section. We make several 
remarks here. 

1. From Propositions 1 and 2 and the monotonicity of M as a func- 
tion offl, there exists a critical point tic in the interval [In [ ( k + 2 ) / ( k +  1 )], 
l n [ ( k +  1 ) / ( k -  1)]]  such that M = 0  if fl<fl, ,  and M > 0  if fl>fl,. .  

2. It is easy to check that l n [ ( k +  l ) / ( k - 1 ) ]  < ( l n k ) / k  when k~>8. 
So from Propositions 2 and 3, when k >/8 there exist fl'~ > tic such that if 
fl,.<fl<fl',., then M > 0  and v S ~ ( v  + + v - ) / 2 .  From Proposition 4, there 
exists fl" >~ fl',. such that if fl > fl", then M > 0 and v f =  (v § + v-)/2.  It is 
natural to expect that fl',. = fl", but this has not been proved, since there is 
no such "monotonicity" which says that if vS= (v § + v - ) /2  for some flo, 
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then the same decomposition is also valid for any fl > fl0. On the other 
hand, it would be very interesting if it happens that fl'~ <fl','., since this 
would mean that when fl is between fl',. and f l " , w r r  and 
v I=  (v + + v - ) /2  alternately occur. But we believe this is not the case. 

3. If one chooses to characterize the second phase transition by the 
behavior of the two-point function, then the situation becomes more clear. 
From Propositions 2-4 and the (weak) monotonicity of v .r with respect to 
fl, when k~> 8 there exists the second critical point ffc>fl,- such that if 
fl~ < fl </~,., then M > 0 and there are x; and y~ in G with <a,.~ay~)r--+ 0 as 
i--* oo, and if f l > / ~ ,  then M > 0  and ( a x a y ) 1 > ~ e > 0  for all x and y in G. 

3. P R O O F  OF P R O P O S I T I O N S  

The proof of the propositions is based on a result of Benjamin 141 and 
a new result about the connectivity function for independent percolation. 
These results are carried over to Ising models by use of the For tuin-  
Kasteleyn (FK) representations of Ising models as dependent percolation 
models and Fortuin's comparison inequalities relating these dependent per- 
colation models to independent ones. The FK random cluster models are 
described by probability measures on the configurations of bond variables, 
n = {nb}, which take the value 1--meaning the bond b = {x, y} is open, or 
0--meaning b is closed. For  a finite A c G, the free b.c. measure i t fq,  p has 
bond-configuration probabilities proportional to 

qCf,,)pOl,,)(l _p)lAI-  o~,,) (6) 

where C(n) denotes the number of distinct clusters defined by the bond 
configurations n, ]A] is the number of bonds in A, and O(n) is the number 
of open bonds in A. The "wired" b.c. measure II~,q,p is defined similarly, 
except COO is determined by regarding all the sites in A c, as well as those 
sites in A which are connected to A C by an open path, as connected. For  

t I and " existJZ, v, 11) q>~ 1, infinite-volume measures l q.p r p The q =  1 case is 
just the independent percolation model, where the probability measure is 
denoted by Pp. We will simply wr i te / t*  for IL*e, where �9 = f  or w. Let 
p = 1 - e - P ,  then Ising models and FK random cluster models are related 
by the following identities: 

Mx -= ( a x )  + =/lp'(X ~ ~ )  (71 

( a,.a,,)s=pYp(x ,--~ y) (8) 
w (a,.ay)_+ = I t p ( X ~ y ,  but x ~  ~ and y ~  ~ )  

+ p ' ~ ' ( x ~  and y ~ )  (9) 
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where x,-- ,y means that x and y are in the same open cluster, and 
x~--, oo(x q-~ or) means that the cluster o f x  is infinite (finite). (See ref. 2 for 
more details.) 

The FK random cluster model is related to the dependent percolation 
model by Fortuin's comparison inequalities stated in Lemma 1 below. For  
a proof of these inequalities see ref. 2, 7, or 11. For  two probability 
measures p and p',  we write /1%p'  if p(A)<.p'(A) for every increasing 
event A. 

Lemma 1. For q ~> 1, let llq, p* be a free or wired b.c. measure of the 
FK random cluster model in G and let Pr be the corresponding independ- 
ent percolation measure. Then 

and 

where p' =p/(p + (1 -p)q). 

Pp* ,/ ~ Pp 

l* ~ Pp, ~p,q 

Although the lenuna is stated for any q/> 1, we only need the q = 2 
case to prove the results for Ising models. 

Proof of Proposition 1. From Lemma 1, we have that 

M==-pp'(O*-* ~ )  ~ Pp(O~-* 05J) 

Because each site of G has at most k + 3 neighbors, a standard elementary 
argument of independent percolation shows that Pp(O~ ~ ) = 0  when 
p <  1 / (k+2) ,  i.e., (recall p = l - e  -~') when /?<In  [ (k+2) / (k+l)] .  This 
proves the proposition. | 

Proof of Proposition 2. Since G contains Tk as a subgraph and the 
critical point for independent percolation on T ,  is Ilk, the critical point for 
independent percolation on G is strictly less than 1/k by a result of 
Aizenman and GrimmettJ 3~ Applying Lemma 1 again, we have that for 
p'>>, 1/k, 

M-p~'(O~--~ o'j) >1 Pp,(O~--* oo) > 0  

Recall that p ' = p / ( p + ( 1 - p ) 2 )  and p = l - e  -/~, it is easy to see that 
p'~> I/k is equivalent to f l / > l n [ ( k +  1 ) / ( k -  1)]. | 

Proof of Proposition 3. Consider an independent bond percolation 
on G where each bond is open with probability p and closed with probabil- 
ity 1 - p .  A site of G is called a boundary site if it is either on the left ray 
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or on the right ray emanat ing from the origin O. A site which is not  a 
boundary  site is called an interior site. Let y,, = O for 17 = 1, 2 ..... and let x,, 
be the nth-generation "child" of  O along the left ray, as shown in Fig. I. 
We first prove that  when p < 1 - 1/k ~/k 

Pp(x,,*-~,y,,)---*O as n ~  (10) 

Then apply Lemma 1, we have that as n ~ oz 

(a.,.,a.,,,,)f =ltYp(x,, ~--*y,,) <. Pp(x,, ~--~ y,,) ~ 0 (11 ) 

when p < 1 - 1/k Ilk, or equivalently when fl < (In k)/k. 
To prove (10), consider the following independent site percolation on 

T k (or more  precisely in the interior of  Tk). An interior site t, is called a 
blocking site if the "horizontal"  bond on the left of  t, as well as the leftmost 
k - 1  "downward"  bonds from v to its children are all closed (see Fig. 1). 
So Pr(v is a blocking s i t e )= (1  _p)k. We say v percolates through blocking 
sites if there exists an infinite sequence of  sites {vi: vi~T~., i = 0 ,  1,2,...} 
such that v0=r ,v~+~ is a child of  t,~, and t,~ is a blocking site for 
i =  0, 1, 2 ..... Then since the critical point  for independent site percolation 
on Tk is 1/k, we have that 

D(p) - Pp (v percolates th rough  blocking sites) > 0 

when ( 1 _ p ) k  > 1/k, or equivalently when p < 1 - 1/k ~/~. For  i =  1, 2 ..... 
n -  1, define B~ to be the event that  the k "downward"  bonds connecting 
x i to its k children are all closed and at least one of  the k - 1  interior 
children of  xi percolates through blocking sites. Then when p < 1 - 1/k ~/k 

Pe(Bi) = ( 1 _ p j k [  1 --(  1 -- D ( p ) ) k -  1] >/( 1 --p)kD(p) > 0 

It is easy to see that if B~ occurs for some i( 1 ~< i ~< n - 1 ), then there is no 
open connect ion from x,, to y,,. So the event "x,, ,--~),,," is contained in 
( ~ n - -  1 c ~= ~ Bi. Noticing that the B~ are independent  events, we have that 

/ , , -  i \ 

e,,(-,,, *-" .v,, ) t N n<, ) 
< . [ 1 - ( 1 - p ) * D ( p ) ] " - ~ O  as n --, ~, (12) 

when p < 1 - 1/k l/*. This proves (10) and hence ( 11 ). 
Finally, if also M>O, then on one hand (a,.a,.)_+ >~M,.M.v>~M2>O 

for any x and y in G. On  the other  hand, by the just proved (11). 
(a,.,,a.,,,,)r~O as n - ,  oz, so 

v-r4: ( v + + v - )/2 

This completes the proof  of  Proposi t ion 3. | 
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P r o o f  o f  P r o p o s i t i o n  4. Consider independent bond percolation on 
G. It is proved in ref. 4 that when p is sufficiently close to 1, then (i) there 
exists a unique infinite open cluster and (ii) there exist infinitely many dis- 
joint open crossings from the left ray to the right ray of G. (The proof in 
ref. 4 is for site percolation, but the same argument applies to bond per- 
colation as well.) From (i), we have that for p' sufficiently close to 1 

( ~r.,.cr.,.)f = liT( x ~ Y) >~ Pp,(x  *-* y )  

>~Pp,(X---~ oo and y--* co) 

>~ P r,( x --, oo) P p,( y - ,  oo) 

>>. o - - ,  oo)>0 

where the second inequality is due to uniqueness of the infinite open cluster 
and the third one is because of the FKG inequality. This proves the first 
part of the proposition. 

From (i) and (ii), the unique infinite open cluster "cuts" G into 
(possibly infinitely many) "finite islands"; arguing as in the proof of 
Proposition 2.1.5 in ref. 17 we have 

v f = (v + + v-  )/2 

The proof is completed. II 
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